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The problem of estimating the thickness and the optical constants of thin films
using transmission data only is very challenging from the mathematical point of view
and has a technological and an economic importance. In many cases it represents a
very ill-conditioned inverse problem with many local-nonglobal solutions. In arecent
publication we proposed nonlinear programming models for solving this problem.
Well-known software for linearly constrained optimization was used with success for
this purpose. In this paper we introduce an unconstrained formulation of the nonlinear
programming model and we solve the estimation problem using a method based
on repeated calls to a recently introduced unconstrained minimization algorithm.
Numerical experiments on computer-generated films show that the new procedure is
reliable. (© 1999 Academic Press

Key Words:unconstrained minimization; spectral gradient method; optical con-
stants; thin films.

1. INTRODUCTION

For most modern applications of thin dielectric or semiconductor films, the optical prc
erties of interest cover a photon energy range around the fundamental absorption ed
the material. Moreover, as the applications make use of multiple coherent reflections a
interfaces, the thickness of the films is an important design and characterization par
eter. Optical transmittance provides accurate and rapid information on the spectral re
where the material goes from complete opacity to some degree of transparency [1, 2]. .
consequence, the problem of retrieving the optical constas =n(1) +ix (1)) and the
thicknesg(d) of thin films, from transmission data only, is of particular importance. Som
useful approximate solutions have been found in cases where the transmittance displa
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interference pattern in a highly transparent spectral region [3-5]. Up to now, however,
general solution of the problem has been elusive, because the system of equations is h
undetermined. Recently, we reported a new method, based on a pointwise constraine
timization approach, which allows us to solve the general case [6, 7]. The method def
a nonlinear programming problem, the unknowns of which are the coefficients to be e
mated, with linear constraints that represent prior knowledge about the physical solut
The retrieval of the correct thickness and optical constants of the films does not rely on
existence of interference fringes. The new method was successful in retriegimgyi(i)
from very different transmission spectra of computer made and real world films [6, 7]. T
main inconvenience of the pointwise constrained optimization approach [6, 7] is that i
a rather complex large-scale linearly constrained nonlinear programming problem wh
solution can be obtained only by means of sophisticated and not always available comg
codes that can deal effectively with the sparsity of the matrix of constraints [8, 9].

We consider then the problem of estimating the absorption coefficient, the refractive in
and the thickness of thin films, using transmission data only. Given the wavelgniit
refractive index of the substraseand the unknownd (thickness)n(x) (refractive index),
andk (A) (attenuation coefficient), the theoretical transmission is given by a well-knov
formula[2, 4, 5]. Having measurements of the transmission at (many) different wavelenc
we want to estimate the above mentioned unknowns. At a first glance, this problem is hic
undetermined since, for each wavelength, the single equation

theoretical transmissiog measured transmission Q)

has three unknowng, n(1), (1) and onlyd is repeated for all values &f. The driving
idea in [6, 7] was to incorporate prior knowledge on the functiolg andx (1) in order

to decrease the degrees of freedom of (1) up to a point that only physically meanin
estimated parameters are admitted.

The idea of assuming a closed formula foand« depending on few coefficients has
already been reported [3-5]. The methods originated from this idea are efficient when
transmission curve exhibits a fringe pattern representing rather large spectral zones:
x(A) is almost null. In other cases, the satisfaction of (1) is very rough or the cotxgs
andx (A) are physically unacceptable.

In [6, 7], instead of imposing a functional form @) andx (1), the phenomenological
constraints that restrict the variability of these functions were stated explicitly so that |
estimation problem took the form:

minimize » " [theoretical transmissiqh) — measured transmission]”  (2)
s

subject toPhysical Constraints

Inthis way, well behaved functiomg.) andx (1) can be obtained without severe restrictions
that may damage the quality of the fitting (1).

The main contribution of the present paper is to establish a method for solving |
estimation problem where (2) is replaced by an unconstrained optimization problem.
solved this problem using a very simple algorithm introduced recently by Raydan [10]. T
method realizes a very effective idea for potentially large-scale unconstrained minimizat
It consists of using only gradient directions with steplengths that ensure rapid converge
The reduction of (2) to an unconstrained minimization problem needed the calculat
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of very complicated derivatives of functions, which could not be possible without tt
use of automatic differentiation techniques. Here we used the procedures for autor
differentiation described in [11].

2. UNCONSTRAINED FORMULATION OF THE ESTIMATION PROBLEM

The transmissiod of a thin absorbing film deposited on a thick transparent substra
(see [4, 5]) is given by

T oo )
where

A = 165(n? + «?), (4)
B=[(n+12+«q[(n+1)(n+s? +«?], (5)

C=[(n?—14«?(n? - 5?4+ «?) — 22%(s* + 1)]2 cosy
—k[2(n? = S + k%) + (2 + 1)(N? — 1 + k?)]2sing, (6)
D=[(n—124+«3[(n - D(n—s?) +«?], 7
¢ = 4xnd/x, X = exp(—ad), a=4aK/A. (8)

In formulae (4)—(8) the following notation is used:

(a) A is the wavelength;

(b) s=s(1) is the refractive index of the transparent substrate (assumed to be know
(c) n=n(x) is the refractive index of the film;

(d) « =« (1) is the attenuation coefficient of the film (s the absorption coefficient);
(e) d is the thickness of the film.

A set of experimental daté.i, T™24i)), Amin <Ai <Aiz1 <Amax fOri=1,...,N,is
given, and we want to estimatk n(1), andx (1). This problem seems highly underdeter-
mined. In fact, for knowrd and givenk, the following equation must hold:

T(A, s(0), d, n(V), k(L) = TMeE0). 9)

This equation has two unknowng\) andx (1) and, therefore, in general, its set of solutions
is a curve in the two-dimensionai(1), k(1)) space. Therefore, the set of functiqns«)
that satisfy (9) for a gived is infinite and, roughly speaking, is represented by a nonline:
manifold of dimensiorN in RN,

However, physical constraints reduce drastically the range of variability of the unknow
n(1), «(1). For example, in the neighborhood of the fundamental absorption edge (norr
dispersion), these physical constraints are:

PC1. n(x) > 1 andx (1) >0 for all A € [Amin, Amax];
PC2. n(») andk (1) are decreasing functions af
PC3. n(}) is convex;
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PCA4. There exist.inf € [Amin, Amax] SUCh thatc (L) is convex ifA > A and concave
if A <Ainfl.

Observe that, assumifC2, PClis satisfied under the sole assumptighna > 1 and
k (Amax) = 0. The constraint®C2, PC3, andPC4 can be written, respectively, as

n'(A) <0and«’(A) <0 forall A € [Amin, Amaxl» (10)
n“(x) >0 forall A € [Amin, Amaxl, (12)
k") <0  forallx € [Amin, Ainfl, (12)
and
k"(A) >0 forall » € [Ainfl, Amax- (13)

Clearly, the constraints

n”(x) > 0forall A € [Amin, Amax] and N (Amax) < 0

imply that
n(x) <0 forall A € [Amin, Amax]-
Moreover,
k" (A) > 0forall A € [Ainfl, Amax] and k' (Ama) <0
imply that
K'A) <0 forall A € [Ainfl, Amax-
Finally,
«" (1) < 0forall A € [Amin, Aini] and  «'(Amin) <0
imply that

K’ <0 forall A € [Amin, Ainfl]-
ThereforePC2 can be replaced by
N (Amax) <0, k' (Amax) < 0, and k' (Amin) < 0. (14)

Summing up, the assumptioR€1-PC4will be satisfied if, and only if,

NAmad =1, k(mad) =0, (15)
N(Ama) <0,  «'(Amax) <0, (16)
n”(a) > 0, forall A € [Amin, Amaxl, an
k") >0, forall & € [Ainfl, Amax, (18)

k"(x) <0,  forall A € [Amin, Ainfl], (19)
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and
K/()\min) <0. (20)

So, the continuous least squares solution of the estimation problem is the s@itigh),
k(L)) of

)Lmax
minimize/ IT(x, s(b), d,n(b), k(L) — T™e0) |12 da (21)
)\mm

subject to the constraints (15)—(20).

Our idea in this work is to eliminate, as far as possible, the constraints of the problem
means of a suitable change of variables. Roughly speaking, we are going to put the obje
function (21) as depending on the second derivativesofandx (1) plus functional values
and first derivatives atnax. Moreover, positivity will be guaranteed expressing the variable
as squares of auxiliary unknowns. In fact, we write

NAma) = 1+ U2, k(Amay) = V2, (22)
N(max) = —Uf,  «'(kma) = — 03, (23)
n"(\) =w®)?  forall A € [Amin, Amaxs (24)
k"(A) =z(n)?  forall & € [Ainfl, Amad, (25)
and
k"W =—z()?  forall & € [Amin, Ainfil. (26)

At this point, in order to avoid a rather pedantic continuous formulation of the problel
we consider the real-life situation, in which data are given by a s&t efjually spaced
points on the intervalmin, Amax]. SO, we define

h = (Amax — Amin)/(N — 1),
and
Ai = Amin+ (i —Dh fori=1,...,N.
Consequently, the measured transmission atill be calledT,"¢2S Moreover, we will use

the notationn;, «i, wj, andz for the estimates ofi(A;), « (Ai), w(Xi), andz(4;), for all
i =1,..., N. The discretization of the differential relations (22)—(26) gives

Ny =14 U2, N = V2, (27)
Nn_1 = NN + U%h, KN_1 = KN + U%h, (28)
n =w?h?+2n,3—niy, fori=1...,N-2 (29)

ki = Z2h? + 241 — kiv2,  if Aigr > Ainfi (30)
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and
ki =— 22N + 241 — Kizz,  If Ais1 < Aindl. (31)

Finally, the objective function (21) is approximated by a sum of squares, giving the of
mization problem

N
minimize } [T (4. (). d, ni. ki) — Tmeay? (32)
i1

subject to
K1 = K2. (33)

Sincen; andk; depend o, uy, v, v1, w, Z, andii, s through (27)—(31), problem (32) takes
the form

minimize f (d, Ainf, U, U1, v, V1, W1, ..., WN-2, Z1, - - - , ZN—2) (34)

subject to (33).

We expect that the constraint (33) will be inactive at a solution of (34)—(33), so we ¢
going to consider the unconstrained problem (34). The constraint (33) can also be ex|
ity considered in the numerical procedure, by adding a penalty temax{0, k> — «1}°.
Although our code is prepared to do that, this was never necessary in the experime
The unknows that appear in (34) have a different nature. The thickihisss dimensional
variable (measured in nanometers in our problems) that can be determined using the o
vationsT,"¢@for (say)Ai > Abound Whereipoung an upper bound foxi, 1, reflects our prior
knowledge of the problem. For this reason, our first step in the estimation procedure
be to estimate using data that correspondAp> Apoung FOr accomplishing this objective
we solve the problem

minimize f (U, Uy, v, v1, w, Z) = Z [T, s, d, i, ki) — Timeaﬂz (35)

Aizrpound

for different values ofl and we take as estimated thickness the one that gives the low
functional value. In this case the constraint (33) is irrelevant since itis automatically satis
by the convexity ok and the fact that the derivative ofat An,in is nonpositive. From now
on we consider that is fixed, coming from the procedure above.

The second step consists of determinig;, together with the unknowns, u;, v, vs,
w, z. For this purpose observe that, givtiandi, s, the problem

N
minimizeZ[T(ki,S(ki),d, ni, ki) —Timeaiz (36)
i=1

is (neglecting (33)) an unconstrained minimization problem whose variablesarev, v,

w, andz (2N variables). We solve this problem for several trial valuesgf and we take as
estimates of andx the combination of variables that gives the lowest value. For minimizin
this function and for solving (35) for different trial thickness, we use the unconstrain
minimization solver that will be described in the next section.
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3. DESCRIPTION OF THE UNCONSTRAINED MINIMIZATION ALGORITHM

As we saw in the previous section, the unconstrained minimization problems (35) «
(36) have the form

minimize f(U, Ui, v, V1, W1, ..., WN=2, 21, - .., ZN_2)- (37)
In order to simplify the notation, in this section we will write
X=(U,Ug, v, V1, W1, ..., WN=2, Z1, - . - , ZN—2)-

Partial derivatives of are usually necessary in optimization algorithms, since they provic
the first-order information on the objective function that allows computational algorithr
to follow downhill trajectories. In this case, derivatives are very hard to compute. For tl
reason it was necessary to use an automatic differentiation procedure (reverse mode
performing this task. See [11] for details.

In principle, any unconstrained optimization algorithm can be used to solve (37) (see |
13]). Since the problem has, potentially, a large number of variables, our choice mus
restricted to methods that are able to cope with that situation. A recent paper by Raydan
induced us to use the spectral gradient method (SGM), an implementation of the Barzi
Borwein method for quadratics, introduced in [10]. In fact, Raydan showed, using a w
known set of classical test problems, that SGM outperforms conjugate gradient algoritt
(see[14, 13]) for large scale unconstrained optimization. Raydan’s spectral gradient me
is extremely easy to implement, a fact that contributed to support our decision, sinc
enables us to become independent of black-box like imported software. Our descriptio
SGM here is, essentially, the one of Raydan with a small difference in the choice of the «
ok whenb, < 0.

We denotay(x) = V f (x). The algorithm starts witky € R" and uses an integt > 0, a
small parametesr > 0, a sufficient decrease parametes (0, 1), and safeguarding param-
eters O< o1 < 03 < 1. Initially, ag € [, 1/¢] is arbitrary. Givenx, € R", anday € [e, 1/¢],
Algorithm 3.1 describes how to obtaiq,1 anday. 1, and when to terminate the process.

ALGORITHM 3.1.

Step 1. Detect whether the current point is stationary

If lg(Xk)) || =0, terminate the generation of the sequence, declaringtiestationary.
Step 2. Backtracking

Step 2.1. Seth <« .

Step 2.2. Setx, = Xx — Ag(Xk).

Step 2.3.If

f(xp) < Ogjgrmn%(),(M—l}{ f -} + v (X — Xk, 90%)), (38)

then definex 1 =X, S = X1 — Xk, @Ndyk = g(Xk+1) — G(Xk)-
Else, define

Anew € [014, 021], (39)

setd < Anews and go to Step 2.2.
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FIG.1. Optical constants adopted for the simulation of thin films. See the corresponding analytical express
in the Appendix.

Step 3. Compute spectral steplength
Computeby = (s, Yk)-
If by <0, Setok1 = Umax
else, computey = (s, ), and

k41 = MiN{&max, MaX{min, a/0k}}.

In practice the computation af,e, Uuses one-dimensional quardratic interpolation and |
is safeguarded with (39).

4. NUMERICAL RESULTS

In order to test the reliability of the new unconstrained optimization approach we us
the computer-generated transmissiogefiankeriiims deposited onto glass or crystalline
silicon substrates. The expressionsgss(1) andss;(1), the refractive indices of the glass
and the silicon substrates, respectively, are shown in the Appendix.

In all the simulations, we assume that the wavelength and the thickness are meas
in nanometers. The transmissidif e(1) for each film was first computed in the range
X € [Amin, Amax] USINg a known thicknesd™ e, a known refractive index™e(%), and a
known absorption coefficient™e()). In order to consider realistic situations, including
experimental inaccuracy, the true transmissidi®(1) was rounded to four decimals. We
performed numerical experiments using 100 transmission points. The precision obtaine
d, n(A), anda(E) rounding the transmission data to four decimal places after the decin
point and without rounding was essentially the same.
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FIG. 2. “True” (dashed lines) and retrieved values (open circles) of the optical transmission, the refract
index, and the absorption coefficient of a numerically generated thin film of thickhes900 nm simulating an
a-Si:H layer deposited on glaskilm A). Note the good agreement found for the optical constants despite tf
thinness of the film.

Three different materials, hydrogenated amorphous silicon (a-Si:H), hydrogenated ar
phous germanium (a-Ge:H), andyadankermetal oxide, were simulated. The numerical
experiments consider three thicknesses: 80, 100, and 600 nm. The trial films are “depos
on a glass or on a c-Si substrate. Note that the transmission formula (3) being used ass
that the substrate is perfectly transparent. As a consequence of this limitation, the us
spectral ranges 350—-2000 nm for glass and 1250-2600 nm for c-Si substrates have
retained in the numerical experiments. The expressiorg " E) andn™e()) used to
generate the transmission spectra are shown in the Appendix. Their dependence on pl
energy(E) and wavelength, respectively, are displayed in Fig. 1. The description of the fi
gedankerexperiments and the retrieved numerical results follow.
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FIG. 3. Quadratic error of the minimization process as a function of trial thickne$slforA. On the left side
the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm. Not
excellent retrieval of the film thickness after 5000 iterations.

Film A. This computer-generated film simulates an a-Si:H thin film deposited on a gl
substrate wittd™€ =100 nm. The computed transmissi®{ ¢(1) in the 540-1530 nm
wavelength range, and the optical constafit§(1) anda""¢(E) are shown as dashed lines
in Fig. 2. The retrieved values aft™e(x), n"“é(x), and«"¢(E) are represented in the
same figure as open circles. The retrieval of the film thickness is shown in Fig. 3. A f
comments are in order. First, the transmission spectrum does not show any fringe patte
the calculated spectral range, as expected for a 100-nm thin film. A well defined maxim
at approximately. = 780 nm and no well defined minima are apparent from Fig. 2. In spil
of this, the “true” thickness is retrieved with a surprising precision. Second, within mc
of the analyzed spectral rang&“®(1) andn'™ (1) are in very good agreement. At short
wavelengths a small difference appears (of up to 0.05) betw#&m.) and the retrieved
n(x). Third, within a factor of two or three, the absorption coefficient is correctly retrieve
in a 3.5 orders of magnitude dynamical range. The retrieval of true values, however, fails
o < 500 cnTt. Remember that the simulation refers to a 100-nm thick film. We consider tl
overall retrieval of the thickness and the optical constants to constitute an outstanding re

Film B. This computer-generated film is identical Fdm A except for its thickness
d"'® =600 nm. The transmission spectrum displays a well structured fringe pattern,
shown in Fig. 4. The retrieved valug@se (1), n"(1), anda™"(E) are also indicated in
Fig. 4 (open circles). Figure 5 shows the results of the minimization process for st
of 10 nm and 1 nm. The true thickness has been perfectly retrieved. In fact, the ove
retrieval is almost perfect in this case. In particular, the absorption coefficient has b
correctly retrieved for a dynamical range of more than 5 orders of magnitude, down
o ~1 cnT . The results shown in Figs. 2 and 4 confirm the well known fact that the thick
the film, the easier it is to retrieve a small absorption coefficient.

Film C. This computer-generated film simulated®® = 100 nm hydrogenated amor-
phous germanium thin film deposited on a crystalline silicon substrate. The compu
transmissiorT "e(%), as well an'™e(x) anda™e(E), is shown as dashed lines in Fig. 6.
TWr()) has been calculated in the (relatively narrow) spectral region 1250-2537 nm wh
c-Si is transparent. As in the casefm A, there is not a well defined fringe pattern.
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FIG. 4. “True” (dashed lines) and retrieved values (open circles) of the transmission, the refractive ind
and the absorption coefficient of a numerically generated film of thickthes800 nm simulating an a-Si:H layer
deposited on glas$im B). Note the very good agreement found for the optical constants and the transmissic

However, two important differences betweEitm A and Film C have to be noted here:
() the index of refraction difference between film and substrate is much larger in the forn
than in the latter case, and (ii) the spectral region computeéifor C does not include
large absorption coefficient values. In other worEigm C is more “transparent” in the
wavelength range considered in the retrieval process. The transmissidm & displays a
well defined minimum at ~ 1520 nm but a neighboring maximum does not appear in th
computed spectral range. The result of the film thickness retrieval process appears in Fi
Inthis case, the overall retrieval process is hot as good as in the preceding cases. In parti
the retrieval of the absorption coefficient is poor. We believe this to be due to the thinn
of the film allied to the fact that the spectral region under consideration does not inclt
large absorption coefficients, i.er,> 100 cnT!. This constitutes the worst imaginable
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FIG. 5. Quadratic error of the minimization process as a function of trial thicknesEilforB. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is :
(5000 iterations). Note the excellent retrieval of the film thickness and the local-nonglobal minimizers.

situation, a very thin non-absorbing film. In spite of this, the “true” thickness has be
retrieved (see Fig. 7), as well as the index of refraction (see Fig. 6). We conclude that
algorithm under discussion fails to retrieve small absorption coefficients of very thin filr
when the transmission spectrum contains data referring only to almost transparent reg

Film D. This computer-generated film is identical fdm C except for its thickness
d''u® =600 nm. The transmission spectrum as well as the “true” and retrieved opti
constants are shown in Fig. 8. Figure 9 displays the results of the minimization proc
leading to the “true” 600 nm thickness. Note that for this thicker a-Ge:H film deposit:
onto c-Si the retrieval ofl andn(}) is perfect (see Fig. 8), as well as the “true” absorptior
coefficient down to 1 cmt. However, the retrieval af fails for E < 0.7 eV. In the smalk
region of the spectrum, these findings mimic those obtainedHilith B (Fig. 4).

Film E. The last numerical example simulates a metal oxide fdfff= 80 nm) de-
posited onto glass. The computed transmission spectrum in the 360—657 nm wavele
range used for the retrieval of the thickness and the optical constants of the materi
shown in Fig. 10. Figure 10 also displays the retrieved valuesaofdc. The film thickness
was perfectly retrieved, as shown in Fig. 11. Let us note at this point the following: (i) t
film thinness and the similar values of both film and substrate inhibit the appearance «
a fringe pattern, (ii) in spite of this fact the optical constants @dde very well retrieved,
and (iii) additional numerical experiments show that for&b0 < 75 nm thick films, the
present algorithm fails to retrievtk n, anda with a precision better than around 10%.

Table | summarizes the findings of all the reported numerical experiments. We finish t
section providing details of our numerical procedure.

For our calculations we need initial estimates ¢f) andn(1.). As initial estimate ok (1)
we used a piecewise linear function the values of which are 0.1 at the smallest waveleng
the spectrum, 0.01 &fyin + 0.2(Amax— Amin), and 102%ati max The initial estimates af(x)
are linear functions varying between%{,) and 2 {.max) With step 1 (these values were cho-
sen because of the previous knowledge of the simulated materials). We excluded the cor
functions because preliminary tests showed us they lead the method to local minimiz
So, we have six possibilities for the initial estimatengf): the decreasing linear functions
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Index of refraction
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FIG.6. “True” (dashed lines) and retrieved values (open circles) of the transmission, the refractive index,
the absorption coefficient of a numerically generatee 100 nm thick film simulating an a-Ge:H layer deposited
on a crystalline silicon substratBilm C). Note that in the spectral region where the c-Si substrate is transpare
the a-Ge:H is weakly absorbing. A good retrieval is found for the index of refraction and for the transmissi
which does not display any fringe pattern. However, the algorithm failed (within an order of magnitude) to retrie

BIRGIN, CHAMBOULEYRON, AND MARTINEZ

TABLE |
Thickness Estimation

Film Spectra dgtrue dretr Quadratic error
A 540-1530 100 100 6.33839410°¢
B 620-1610 600 600 2.4250%110°°
C 1250-2537 100 100 6.09462910°8
D 1250-2537 600 600 6.35326710°8
E 360-657 80 80 5.0854191077
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the correct absorption coefficient in the<kx < 100 cnt? interval.




ESTIMATION OF OPTICAL CONSTANTS 875

10 T T T T T T t T T
1 10°F % 3
5 F .000\. o LY
6 10 Er .\.\ /... '! 6 .\’
o r 2 J 1 @ 10°F \0 .
o | V] e PN s
T 10°F ® . 1 ® F \ ]
he] E p -E 6 i ° 1
S F e 1 5107 \
SARTM P 19 ¢ b ]
: b 3 7 \ ®
3 L 1 10°F veccesee®’
10-8 i 1 L ! L 1 L 1 N 1 L1 1 PR IS IS |
0 50 100 150 200 90 95 100 105 110
Trial thickness (nm) Trial thickness (nm)

FIG. 7. Quadratic error of the minimization process as a function of trial thicknesBilforC. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is :
(5000 iterations). The “true” thickness of the film has been retrieved.

defined by the pairs of points(Amin, 3); Amax 21, [(Amin, ; Amax 2], [Amin, 5);
(Amaxs D1, [mins 4); maxs D], [Amin, 5); (Amax, 3], and [(Amin, 5); (Amax, H]. The re-
ported computed (1) corresponds to the best performance.

The general scheme to obtain the optimal parameters is as follows. First, we needto b
down the spectrum into two part3:fin, Abound @nd [Abound Amax, Whereipoungis a known
upper bound ok, 5. To estimate the thickness we use the points with abscissa belong
t0 [Abouns Amax- The procedure consists in running Algorithm 3.1 for different values ¢
d betweend™" = 1dkick andd™@= 3dkk with step 10, ™", d™" 4 10, d™"+ 20, .. ),
whered“® s a rough initial estimate of the true thickness. In this way, we olat&t, the
thickness value for which the smallest quadratic error occurs. Then we repeat the pr
dure withd™" =d"a — 10, d™>=d"a + 10 and step 1 obtaining, finally, the estimated
thicknessiPest

To estimate the inflection point we proceed in an analogous way, using the whole spect
and the thickness fixed @St trying different possible inflection points (obviously between
Amin @NdApound and taking as the estimated inflection point the one which gives the small
quadratic error. In all the runs just described, we allow only 3000 and 5000 iterations
Algorithm 3.1, when thel"™@ step is equal to 10 and 1, respectively. The final step of th
method consists on fixing®stand i, 4, and running Algorithm 3.1 once more allowing
50,000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an UltraSPARC ¢
bits processor, 167-MHz clock, and 128 MBytes of RAM memory. We used the langue
C++ with the g++ compiler (GNU project C and C++ compiler v 2.7) and the optimizatic
compiler option—0O4. In spite of the many executions of the unconstrained minimizatic
algorithm that are necessary to solve each problem, the total CPU time used undel
mentioned computer environment never exceeded 5 minutes.

5. CONCLUSIONS

The analysis of the numerical results allows us to draw the following conclusions.

1. The proposed procedure is highly reliable for estimating the true thickness in
films when four digits transmission data are used. The method provides a very good retri
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FIG.8. “True” and retrieved values of the transmission, the refractive index, and the absorption coefficien
a numerically generated thin film of thickneds= 600 nm simulating an a-Ge:H layer deposited on a crystalline
silicon substrateRilm D). Note the overall good agreement found for the optical constants and the transmissi
The retrieval of the “true” absorption coefficient foxda < 100 cnt! is excellent.

of the true transmission in cases where no approximate methods are useful, i.e., very
films (d > 75 nm) or absorbing layers.

2. The algorithm being discussed here fails to retrieve the true thickness and
true absorption coefficient from the transmission spectrum of very thin transparent filr
Additional numerical experiments, not being discussed here, indicate a defective retrie
of the thickness and the optical constantd ef 75 nm thin films from optical transmission
data.

3. In some cases the quadratic error as a function of the guessed thickness (Fig.
a function with several local-nonglobal minimizers. The strategy of separating the varia
d from the other variables of the optimization problem appears to be correct, since it te
to avoid spurious convergence to those local minimizers.



ESTIMATION OF OPTICAL CONSTANTS 877

¥ i M 1 1 4 LI L~ | 1 1 ¥ 1
- F E 3 [ [
107 F onam \ ' 1 107E "o o 3
- E / e : ‘0\. ‘o..
o 3 Py 1 9, . L *
5 35 10°F . g 3
o 10'35' ; ° E 1 o F \o\ J
© s H , i ® 5
5 i . = 10°F .
g e 1% H
S 0%y 10 0L ]
1 e ! 1
10-7 i L :---'---.‘ L ] 10'7 E 7 P T T
300 450 600 750 900 590 595 600 605 610
Trial thickness (nm) Trial thickness (nm)

FIG. 9. Quadratic error of the minimization process as a function of trial thicknesBilforD. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is :
(5000 iterations). Note the excellent retrieval of the film thickness and the local-nonglobal minimizers.

4. The comparison of the present results with those previously obtained using
algorithm described in [5, 6] seems to confirm that the new method is, at least, as efficier
the previous constrained optimization approach. In addition, the resulting piece of softw

is more portable and easier to manipulate.
5. As one of the referees pointed out, further time reductions can be expected fi
considering spectral preconditioning schemes (see [15]). This will be done in future wor

APPENDIX

Analytical expressions used to compute the substrates and the simulated optical cons
of semiconductor and dielectric films are

SglassA) = /1 + (0.7568— 7930/22)1L, (40)

Ssi(A) = 3.71382— 8.69123 10°)1 — 2.47125 10832 + 1.04677 10123,  (41)

a-Si:H

Index of refraction

n"e(\) = /1 + (0.09195— 1260Q/A2)~1. (42)
Absorption coefficient

6.5944 106 exp(9.0846E) — 16.102 0.60 < E < 1.40;

INn(@™&(E)) = { 20E — 419, 140< E <175 (43)
+/59.56E — 1021 — 8.391, 1.75< E < 2.29.
a-Ge:H

Index of refraction

n"e() = /1 + (0.065— (15000'22)~1. (44)
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FIG. 10. “True” and retrieved values of the transmission, the refractive index, and the absorption coeffici
of a numerically generated thin film of thickneds=80 nm simulating a metal oxide layer deposited on glass
(Film E). The overall retrieval of the optical constants and the transmission is excellent. Note that (i) the transmis
spectrum does not contain any interference fringe pattern, and (ii) the “true” absorption coefficient has &

correctly retrieved for a four orders of magnitude dynamical range. However, the retrievaflad$ for E <

245eV.

Absorption coefficient

6.5944 10%exp(13.629E) — 16102,  0.48 < E < 0.93;
In(@"™&(E)) = { 30E — 419, 093< E < 117,

+/89.34E — 1021 — 8.391 117 < E < 1.50.

(45)
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FIG. 11. Quadratic error of the minimization process as a function of trial thicknedsilfarE. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is :
(5000 iterations). The “true” 80-nm thickness of the metal oxide layer was retrieved with no error.

Metal Oxide

Index of refraction

ne) = /1 + (0.3 — (1000Q'22))~1. (46)
Absorption coefficient
In(@"™8(E)) = 6.5944 10° exp(4.0846E) — 11.02, 05<E <35  (47)

In the expressions above, the wavelengtis in nm, the photon energlf = 1240/ is in
eV, and the absorption coefficiemtis in nnT L.
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